Featured Publications

 

Jul 13, 2020

Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems

Nature Electronics

Epicore Biosystems and Northwestern University report a biocompatible, sweat-activated battery technology that can be embedded within a soft, microfluidic platform. The battery can be used in a detachable electronic module that contains wireless communication and power management systems, and is capable of continuous on-skin recording of physiological signals. To illustrate the practical utility of our approach, we show, using human trials, that the sweat-activated batteries can operate hybrid microfluidic/ microelectronic systems that simultaneously monitor heart rate, sweat chloride and sweat pH.

Read more


Feb 12, 2020

Can Sweat Shed a Light on Disease Severity in Atopic Dermatitis?

Dermatology Times

Wearable sensors might soon provide dermatologists and patients with unprecedented real-time information about skin health.

One such device in development, Epicore Biosystems’ wearable Discovery patch (Leo Pharma and Epicore Biosystems), aims to assess inflammatory biomarkers found in sweat and interstitial fluid in individuals with atopic dermatitis. The wearable technology will analyze cytokines in sweat to offer real-time objective assessment of the state of disease in adults with the chronic skin condition.

Read More


2020

Human motion component and envelope characterization via wireless wearable sensors

BMC Biomedical Engineering

Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback.

Read More


2020

Role of data measurement characteristics in the accurate detection of Parkinson’s disease symptoms using wearable sensors

Journal of NeuroEngineering and Rehabilitation

Parkinson’s disease (PD) is a progressive neurological disease, with characteristic motor symptoms such as tremor and bradykinesia. There is a growing interest to continuously monitor these and other symptoms through body-worn sensor technology. However, limited battery life and memory capacity hinder the potential for continuous, long-term monitoring with these devices. Here we build on a previous study to investigate the relationship between data measurement characteristics and accuracy when using wearable sensor data to classify tremor and bradykinesia in patients with PD.

Read More


Apr 1, 2020

Don’t Sweat It: The Quest for Wearable Stress Sensors

Matter

A nervous sweat may seem like an inconvenience, but your body could be releasing important signals. Herein, Gao and colleagues develop a wearable sensor with integrated microfluidics, immunoassays, and electronics for tracking cortisol in sweat—as a biomarker of stress.

Read More


Oct 22, 2019

Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat

Lab on a Chip

Here, we present a multi-layered microfluidic device platform to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.

Read More


Oct 18, 2019

Augmenting Clinical Outcome Measures of Gait and Balance with a Single Inertial Sensor in Age-Ranged Healthy Adults

Sensors

Gait and balance impairments are linked with reduced mobility and increased risk of falling. Wearable sensing technologies, such as inertial measurement units (IMUs), may augment clinical assessments by providing continuous, high-resolution data. This study tested and validated the utility of a single IMU to quantify gait and balance features during routine clinical outcome tests, and evaluated changes in sensor-derived measurements with age, sex, height, and weight.

Read More


2019

Soft, Skin-Interfaced Microfluidic Systems with Passive Galvanic Stopwatches for Precise Chronometric Sampling of Sweat

Advanced Science News

Recent developments in skin-integrated soft microfluidic systems address many challenges associated with standard technologies in sweat collection and anal- ysis. However, recording of time-dependent variations in sweat composition requires bulky electronic systems and power sources, thereby constraining form factor, cost, and modes of use. Here, presented are unconventional design concepts, materials, and device operation principles that address this challenge. Flexible galvanic cells embedded within skin-interfaced microfluidics with passive valves serve as sweat-activated “stopwatches” that record temporal information associated with collection of discrete microliter volumes of sweat. The result allows for precise measurements of dynamic sweat com- position fluctuations using in situ or ex situ analytical techniques.

Read More


Feb 20, 2019

Wearable Sensors for Biochemical Sweat Analysis

Annual Review of Analytical Chemistry

Sweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cy- tokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation.

Read More


2019

Bio-Integrated Wearable Systems: A Comprehensive Review

Chemical Reviews

This review summarizes the latest advances in this emerging field of “bio-integrated” technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care.

Read More


Mar 12, 2019

Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system

Lab on a Chip

This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/ mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of biomarkers relevant to kidney disorders.

Read More